“数组”: https://leetcode.com/tag/array/ “二分查找”: https://leetcode.com/tag/binary-search/ “分治算法”: https://leetcode.com/tag/divide-and-conquer/

Problem: Link to heading

给定两个大小分别为 mn 的正序(从小到大)数组 nums1nums2。请你找出并返回这两个正序数组的 中位数

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

示例 3:

输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000

示例 4:

输入:nums1 = [], nums2 = [1]
输出:1.00000

示例 5:

输入:nums1 = [2], nums2 = []
输出:2.00000

提示:

  • nums1.length == m
  • nums2.length == n
  • 0 <= m <= 1000
  • 0 <= n <= 1000
  • 1 <= m + n <= 2000
  • 106 <= nums1[i], nums2[i] <= 106
  • *进阶:**你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗?

Solution: Link to heading

https://leetcode-cn.com/problems/median-of-two-sorted-arrays/solution/di-k-xiao-shu-jie-fa-ni-zhen-de-dong-ma-by-geek-8m/

class Solution
{
public:
    int getKthElement(const vector<int> &nums1, const vector<int> &nums2, int k)
    {
        /* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
         * 这里的 "/" 表示整除
         * nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
         * nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
         * 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
         * 这样 pivot 本身最大也只能是第 k-1 小的元素
         * 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
         * 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
         * 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
         */

        int m = nums1.size();
        int n = nums2.size();
        int index1 = 0, index2 = 0;

        while (true)
        {
            // 边界情况
            if (index1 == m)
            {
                return nums2[index2 + k - 1];
            }
            if (index2 == n)
            {
                return nums1[index1 + k - 1];
            }
            if (k == 1)
            {
                return min(nums1[index1], nums2[index2]);
            }

            // 正常情况
            int newIndex1 = min(index1 + k / 2 - 1, m - 1);
            int newIndex2 = min(index2 + k / 2 - 1, n - 1);
            int pivot1 = nums1[newIndex1];
            int pivot2 = nums2[newIndex2];
            if (pivot1 <= pivot2)
            {
                k -= newIndex1 - index1 + 1;
                index1 = newIndex1 + 1;
            }
            else
            {
                k -= newIndex2 - index2 + 1;
                index2 = newIndex2 + 1;
            }
        }
    }

    double findMedianSortedArrays(vector<int> &nums1, vector<int> &nums2)
    {
        int totalLength = nums1.size() + nums2.size();
        if (totalLength % 2 == 1)
        {
            return getKthElement(nums1, nums2, (totalLength + 1) / 2);
        }
        else
        {
            return (getKthElement(nums1, nums2, totalLength / 2) + getKthElement(nums1, nums2, totalLength / 2 + 1)) / 2.0;
        }
    }
};